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bearing a chiral 1,2-cis-disubstituted cyclopropane substructure
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Abstract—The first asymmetric synthesis of �-substituted �-methoxyacrylate bearing a chiral 1,2-cis-disubstituted cyclopropane
ring as a ‘conformationally locked’ substructure, by Claisen condensation and E-selective Wittig reaction was successfully
achieved. © 2002 Elsevier Science Ltd. All rights reserved.

�-Methoxyacrylates (MOAs) including strobilurins (1)
and oudemansins (2) inhibit the mitochondrial respira-
tion pathway by interfering with the function of the
cythochrome bc1 complex.1 Although these natural
MOAs exhibit a broad spectrum of fungicidal activity,
they could not be used as practical fungicides because
of their photoinstability and high volatility. Extensive
screenings of a number of analogues have, therefore,
been carried out to overcome these problems, and
Azoxystrobin (3), Kresoxim-methyl (4) etc., were devel-
oped as potent agricultural disinfectants.2,3 However,
the prevalence of resistant strains against these aro-
matic analogues has recently been reported as a serious
problem.4 On the other hand, �-substituted �-methoxy-
acrylates such as cystothiazoles (5)5 and melithiazoles
(6)6, were recently isolated from nature as a new type of
MOAs (Fig. 1). Both of these �-substituted MOAs
include an oudemansin-type syn-9-methoxy-10-methyl
substructure at the position corresponding to the 9-10
position of the original strobilurin skeleton. However,
we assumed that this ‘conformationally unlocked’ 9-10
linkage is not ideal for their antifungal activities. There-
fore, several studies to develop a novel and effective
9-10 linkage are now in progress in our laboratory. In
the previous paper, the synthesis and antifungal activity
of novel 9-methoxystrobilurin-type �-substituted
MOAs was reported, and the superiority of ‘conforma-
tionally locked’ 9-methoxystrobilurin-type analogue
compared with the corresponding oudemansin-type
analogue was clearly demonstrated.7,8 In this paper, we

would like to describe the first and asymmetric synthe-
sis of �-substituted MOAs bearing a chiral 1,2-cis-di-
substituted cyclopropane ring as a ‘conformationally
locked’ substructure (Fig. 2). While a similar interesting
work concerning �-substituted MOAs was recently
reported by Rossi et al.,9 our present study can provide

Figure 1. Structure of MOAs analogues.

Figure 2. Structure of target molecules.
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more precise information on the structure–activity rela-
tionships of the �-substituted analogues through the
synthesis of chiral molecules.

A synthetic strategy for 7 from chiral cyclopropane 10
is shown in Scheme 1. The crucial steps in this strategy
are (i) Claisen condensation of chiral lactone 8 with
lithium enolate of methyl acetate, and (ii) efficient
introduction of an aromatic moiety by E-selective Wit-
tig reaction. The starting chiral lactone (+)-8 and (−)-8
would be easily prepared from dimethyl meso-cyclo-
propane-1,2-dicarboxylate 9 via an enzymatic enan-
tioselective hydrolysis utilizing PLE (Porcine liver
esterase)10 and successive chemoselective reduction.

Chiral monoester 10 was prepared according to
reported procedure, and a carboxylic acid moiety of 10
was selectively reduced by BH3·THF to give the corre-
sponding �-hydroxylester 11. The ester 11 was then
treated with p-TsOH to obtain the chiral lactone (+)-8
in quantitative yield. On the other hand, the ester
moiety of 10 was also selectively reduced by LiBH4 to
afford the alcohol 12, and was transformed to (−)-8
quantitatively. The optical purities of (+)-8 and (−)-8
were determined as >99% ee10,11 (Scheme 2).

With chiral lactones (+)-8 and (−)-8 in hand, we turned
our attention to the formation of the �-substituted
�-methoxyacrylate moiety. A reaction of the chiral
lactone (+)-8 with lithium enolate generated from
methyl acetate was carried out. However, the desired
�-ketoester was not isolated, and a cyclic ketal 13 was
obtained only in 11% yield. The low yield might be due
to the high water-solubility of 13, and we attempted to

trap the intermediate anion as the tert-butyldimethylsil-
yl ether. As a result, TBS-protected �-ketoester 15 and
TBS-protected silyl enol ether 14 were obtained in 52
and 39% yields, respectively. The chemoselective desilyl-
ation of the silyl enol ether moiety of 14 was performed
by stirring in THF–H2O at room temperature for 9 h to
give the TBS-protected �-ketoester 15. For the forma-
tion of an E-�-methoxyacrylates moiety, TBS-protected
�-ketoester 15 was treated with tert-BuOK and
dimethyl sulfate in HMPA, and the desired O-methy-
lated product 16 was obtained in 67% yield. On the
other hand, when the same reaction was carried out in
THF, an undesired C-methylated product was exclu-
sively produced. Then, the silyl ether moiety of 16 was
deprotected by the addition of Et3N(HF)3 in CH2Cl2 to
give the corresponding alcohol 17 in 88% yield. The
resulting alcohol 17 was converted to the aldehyde 18
by PCC oxidation. The aromatic moiety was finally
introduced by E-selective Wittig reaction with phos-
phonium ylide prepared from benzyl tributyl phospho-
nium bromide and KHMDS.12 The desired product
(+)-713 was stereoselectively (E/Z >50/1) obtained in
63% yield (two steps). The synthesis of the enantiomer
(−)-713 was also achieved from (−)-8 by a similar proce-
dure.

In conclusion, asymmetric synthesis of a ‘conforma-
tionally locked’ �-substituted �-methoxyacrylate bear-
ing a chiral 1,2-cis-disubstituted cyclopropane
substructure was successfully achieved. It is noted that
the present synthetic method for the �-substituted
MOAs starting from readily available chiral lactone
would be applicable to the synthesis of various ana-
logues having other types of 9-10 linkage by use of

Scheme 1. Retrosynthetic analysis of 7.

Scheme 2. Reagents and conditions : (i) PLE, NaHCO3, buffer pH 8, rt; (ii) BH3·THF, THF, −20°C to rt; (iii) cat. TsOH, benzene,
reflux; (iv) LiBH4, THF, −20°C to rt; (v) TsOH, benzene, reflux.



D. Hasegawa et al. / Tetrahedron Letters 43 (2002) 7185–7187 7187

Scheme 3. Reagents and conditions : (i) LDA, methyl acetate, THF, −78°C; (ii) LDA, methyl acetate, THF, −78°C, then TBSCl,
HMPA, (iii) THF, H2O, rt; (iv) Me2SO4, tert-BuOK, HMPA, rt; (v) Et3N(HF)3, CH2Cl2, rt; (vi) PCC, NaOAc, MS3A, CH2Cl2,
rt; (vii) KHMDS, benzyltributylphosphoniumbromide, toluene, 0°C.

appropriate lactones. Further investigations on the
structure–activity relationships of �-substituted MOAs
and development of a novel pharmacologically superior
analogue are now in progress (Scheme 3).
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